rapid communication

Blood-borne, albumin-bound prostaglandin E_2 may be involved in fever

ANDREJ A. ROMANOVSKY,^{1,2} ANDREI I. IVANOV,¹ AND ELENA K. KARMAN² ¹Thermoregulation Laboratory, Legacy Holladay Park Medical Center, Portland, Oregon 97208; and ²Institute of Physiology, Minsk 220072, Belarus

Romanovsky, Andrej A., Andrei I. Ivanov, and Elena K. Karman. Blood-borne, albumin-bound prostaglandin E₂ may be involved in fever. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45): R1840-R1844, 1999.— Although the involvement of blood-borne PGE₂ in fever has been hypothesized by several authors and has substantial experimental support, the current literature often rejects this hypothesis because several attempts to induce fever by a peripheral PGE₂ failed. However, it is usually ignored that the amphipathic molecules of PGE₂ are readily self-associating and that such an aggregation could have prevented the peripherally administered PGE₂ (free form) from expressing its pyrogenic activity, thus leading to false negative results. To ensure disaggregation of PGE₂, we prepared its complex within a carrier protein, human serum albumin (HSA). HSA was purified with activated charcoal and polymixin Bpolyacrylamide gel and incubated with PGE₂ for 1 h at 37°C. Adult Chinchilla rabbits were injected intravenously with PGE_2 -HSA complex in either the higher (75 µg/kg PGE_2 :30 mg/kg HSA) or the lower (15 µg/kg:6 mg/kg) dose, and the rectal temperature (T_r) was measured. In the controls, either the ligand alone or the carrier alone was administered. At the higher dose, neither free \mbox{PGE}_2 nor albumin alone was pyrogenic, whereas the PGE₂-HSA complex produced a fever characterized by a short latency (<10 min) and a maximal T_r rise of 0.7 \pm 0.2 °C. At the lower dose, none of the substances affected the T_r. This study demonstrates a marked pyrogenic activity of the intravenous PGE₂-HSA, but not of the free PGE₂. Administration of a preformed complex may be more physiologically relevant than administration of the free ligand because of the ligand's disaggregation, protection from enzymatic degradation, and facilitated delivery to targets. Our study supports the hypothesis that peripheral PGE_2 is involved in fever genesis.

prostanoids; carrier-mediated transport; febrile response; temperature regulation; neuroimmunomodulation; rabbits

SINCE MILTON AND WENDLANDT (19) discovered the pyrogenic effect of centrally injected PGs of the E series, PGE₂ has been considered an ultimate mediator of fever (2, 18, 42). However, it is still unclear whether the febrigenic PGE₂ is produced inside or outside the blood-brain barrier (BBB) (2, 42). The important role of peripheral PGE₂ in fever was originally proposed by Dascombe and Milton (7) in 1979 and restated in the 1980s by Skarnes et al. (41), Rotondo et al. (36), and Morimoto et al. (22). The febrigenic role of blood-borne PGE₂ has been supported by several lines of evidence. First, PGE₂ concentration in the venous blood of rabbits and sheep (20, 36, 41) and in the carotid blood of sheep (41) increases simultaneously with the onset of fever. Second, peripherally administered inhibitors of either the precursor release (18) or the synthesis of PGs (21, 36) block the febrile response even if they do not cross the BBB (rabbits). Third, as it has been shown in several species, intravenous PGE₂ crosses the BBB (1, 7, 11, 16) and produces dose-dependent fevers (11, 26, 40); the intracarotid PGE₂ is also highly pyrogenic in sheep (5, 41). However, there is also a great body of data contradicting the peripheral origin of febrigenic PGE_2 (for review, see Ref. 2). Thus several studies in rabbits, guinea pigs, and sheep that attempted to induce fever by intravenous (17, 19, 41) or intracarotid (20, 38) PGE₂ or PGE₁ failed, as did studies in rabbits and guinea pigs that attempted to detect PGE₂ in the cerebrospinal fluid (20) or preoptic microdialysate (38) after PGE_2 infusion into the carotid artery. As a result, the idea of blood-derived PGE₂ playing an important role in fever has been either ignored (37, 42) or rejected (2) by many authors, including some of the early proponents (20). In the present study, we suggest that such a rejection might have been premature and that the reported inability of peripheral PGE₂ to enter the brain and trigger the febrile response might have had a methodological explanation.

When PGs are administered peripherally, highconcentration ($\geq 10^{-3}$ M) aqueous solutions with a small amount of an organic solvent (usually ~1% ethanol) are commonly used (17, 19, 38). However, PGs are amphipathic, poorly water-soluble substances; at these concentrations, they are likely to self-aggregate as a result of interactions between the hydrophobic cyclopentane rings and/or numerous intermolecular hydrogen bonds (10). Such an aggregation is well known for changing the processes of body distribution and diminishing the specific biological activity of amphipaths (15). On the other hand, when aggregation of amphipathic substances is prevented (e.g., by administering them in lipid vesicles), their specific biological effects are easily revealed. Thus incorporation of PGE₁

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

into soybean oil microspheres decreases the clearance of the PG from the blood and markedly potentiates its inhibition of platelet aggregation (24). Another way to reduce the aggregation of PGs in aqueous solutions is to decrease the PG concentration and/or increase the concentration of an organic solvent, such as ethanol. Interestingly, those studies demonstrating a pyrogenic effect of intravenously administered PGE₂ (11, 40) involved either a high concentration of ethanol (15%) or a low concentration of the PG (200 μ M) in the injected solution, whereas the studies failing to induce fever by intravenous PGE (17, 19, 41) used a 30–75× lower concentration of ethanol (41), did not use ethanol at all (17, 19), or worked with PG concentrations up to 30× higher (17).

Yet another way to prevent aggregation of PGs is by binding to serum albumin, a principal transport protein for amphipathic molecules in blood (27). Based on in vitro binding studies, it has been suggested that up to 99% of the circulating PGE₂ is albumin bound (3, 45). If exogenous PGs administered in high-concentration aqueous solutions were to readily bind to blood albumin, there would be no concerns regarding their aggregation. However, the binding rate of exogenous PGE_2 to albumin is much lower than the rate of its clearance. Indeed, only 60% of PGE_2 is bound to albumin after a 5-min incubation in vitro (31), whereas, in vivo, >50%of a radiolabeled PGE₂ is cleared from the circulation within 30 s (13), presumably by the lungs (28). Therefore, a physiologically meaningful binding of an exogenous PGE₂ to albumin would require their joint preincubation.

In the present study, we preincubated PGE_2 with human serum albumin (HSA) to allow for the formation of a PGE_2 -HSA complex. Low and high doses of both the free form and the HSA-bound form of PGE_2 were injected intravenously in rabbits, and their pyrogenic activities were compared.

METHODS

Animals. Twenty-nine male Chinchilla rabbits weighing \sim 3.3 kg were purchased from the Minsk Society of Rabbit Breeders (Minsk, Belarus). The animals were housed in individual cages and exposed to a 12:12-h light-dark cycle (lights on from 8:00 AM) and a neutral (23°C) ambient temperature. Food and water were available ad libitum. During the week preceding an experiment, the animals underwent at least three 4-h-long sessions of habituation to the experimental conditions. Immediately before an experiment, all the animals were deprived of food (but not water) for 12 h. To obviate the possible effects of circadian rhythms, all experiments were started around 10:00 AM. Each animal was used in an experiment only once and killed with an intravenous injection of pentobarbital sodium thereafter.

Drugs. HSA (Fraction V; Blood Transfusion Center, Vitebsk, Belarus) was processed to remove endogenous fatty acids, which are known to inhibit PGE_2 binding to albumin (6). HSA was dissolved in pyrogen-free water (50 mg/ml) and defatted according to Chen's method (4). This procedure resulted in a decrease of the molar ratio of nonesterified fatty acids (determined by Duncombe's method, Ref. 9) to HSA (bromcresol green dye assay, Ref. 8) from ~1.5 to <0.1. To eliminate potential lipopolysaccharide contamination, the defatted HSA was diluted twofold with pyrogen-free sodium chloride (1.8% wt/vol), alkalinized to pH 7.4, and gently stirred for 60 min at room temperature with Polymixin B (Sigma, St. Louis, MO) covalently attached to polyacrylamide beads according to the procedure of Plate et al. (29). The purified HSA was then passed through a sterile 0.22 μ M Millipore filter (Sigma), frozen, and stored at -20° C. A complex of PGE₂ (Sigma) was freshly prepared each day by diluting its ethanol stock (3 mg/ml) with the purified HSA (20 mg/ml) and incubating it at 37°C for 1 h. The final concentrations of PGE₂, HSA, and ethanol in the incubate were 50 μ g/ml, 20 mg/ml, and 1.7%, respectively. For control experiments, a solution of the free PGE₂ was prepared by diluting its ethanol stock with a pyrogen-free isotonic saline.

Experimental protocols. The pyrogenic activities of the free PGE₂, free HSA, and PGE₂-HSA complex were tested. The drug of interest was injected into a marginal ear vein, and the animal's rectal temperature (T_r) was measured with an electronic thermometer (Institute of Experimental Medicine, St. Petersburg, Russia) from 1 h before to 4 h after the injection; the probe length was 5 cm. Both the free and bound PGE₂ were injected in two doses: a low one (15 µg/kg of PGE₂ and 6 mg/kg of HSA) and a high one (75 µg/kg of PGE₂ and 30 mg/kg of HSA). For the low dose, the drugs were injected at 0.3 ml/kg; for the high dose, the volume of injection was 1.5 ml/kg. The two PGE₂ doses chosen fit in the lower 2% portion of the range (3–3,500 µg/kg) cumulatively covered by nine earlier studies (cited in introduction) of thermal effects of PGE (free form) administrated peripherally.

Data analysis. Data (means \pm SE) are presented as a deviation of the T_r (Δ T_r) from its preinjection level (averaged over a 45-min period). For each response, we determined two measures: the maximal value of Δ T_r (Δ T_{rmax}) and the fever index (FI). The latter was calculated as an integral of the Δ T_r time function over 0–4 h postinjection. Each of the two obtained response measures (FI and Δ T_{rmax}) was subjected to a two-way ANOVA followed by Scheffé's test. To compare the urination- and defecation-inducing effects of the albuminbound vs. the free form of PGE₂, the exact Wilcoxon rank-sum test was used.

RESULTS

The thermal responses of the rabbits to the low dose of HSA, PGE_2 , and PGE_2 -HSA are presented in Fig. 1*A*. At this dose, none of the drugs caused a fever. An ANOVA found no differences in the thermal responses (FI, ΔT_{rmax}) to the three treatments [FI, *F*(2,13) = 0.21, P = 0.82; ΔT_{rmax} , F(2,13) = 0.29, P = 0.75]. The thermal responses to the high dose of HSA, PGE₂, and PGE₂-HSA are presented in Fig. 1B. The results of an ANOVA of FI and $\Delta T_{\rm rmax}$ were identical [*F*(2,10) = 7.2, *P* = 0.01], thus rejecting the hypothesis of the three responses being alike. Indeed, neither free PGE₂ nor HSA alone was pyrogenic, whereas the injection of the preformed PGE₂-HSA complex resulted in a marked fever. This fever had a very short (<10 min) latency, reached its maximum (0.7 \pm 0.1°C) at 126 \pm 28 min, and persisted over ~ 4 h (Fig. 1B). Scheffé's analysis showed that PGE₂-HSA-induced fever was significantly different from the thermal responses to both free PGE₂ (FI, P = 0.02; ΔT_{rmax} , P = 0.01) and HSA (FI, P = 0.05; $\Delta T_{\rm rmax}$, P = 0.02).

The rabbits receiving the high dose of PGE_2 (75 µg/kg) in the albumin-bound form responded to the

Fig. 1. Thermal responses of rabbits to intravenous injection (arrow) of preformed complex of PGE₂ with human serum albumin (HSA) at low (*A*) or high (*B*) dose. Control animals received either free form of PGE₂ or HSA alone. In low-dose experiment, drugs were injected as follows: free PGE₂ at 15 µg/kg (n = 5 animals), HSA at 6 mg/kg (n = 5), and PGE₂-HSA complex at 15 µg/kg:6 mg/kg (n = 6). In high-dose experiment, drugs were administered as follows: PGE₂ at 70 µg/kg (n = 4), HSA at 30 mg/kg (n = 4), or PGE₂-HSA at 70 µg/kg:0 mg/kg (n = 5). In all experiments, initial rectal temperature (T_r) was similar; mean initial T_r for whole study was 39.1 ± 0.1°C.

injection with rapid (1–3 min postinjection) defecation (100% of the animals) and urination (60%), whereas the animals treated with the free form exhibited both symptoms later (>3 min; P = 0.15) and somewhat less regularly (defecation, 75%; urination, 50%). [Interestingly, a smaller dose of free PGE₂ (~45 µg/kg, intracarotid) in lambs caused defecation only occasionally (5).] No urination or defecation at all was detected during the first 10 min after PGE₂ administration at the low dose (15 µg/kg), whether free or HSA bound, or after HSA injection at any dose.

DISCUSSION

*Pyrogenic activity of albumin-bound PGE*₂. The present study demonstrates a marked pyrogenic activity of PGE₂ when it is administered intravenously in a preformed complex with HSA, but not when it is given in the free form. Why is binding to albumin required for the pyrogenic activity of intravenous PGE₂? Serum

albumin is a principal carrier in the blood of various amphipathic organic molecules (27), including PGs (3, 31, 45). Adding albumin to an aqueous solution of an amphipathic ligand results in a left shift in the equilibrium: albumin-bound ligand \leftrightarrow monomeric ligand \leftrightarrow self-aggregated ligand. As the result of this shift, the ligand's biological activity may be affected in three ways. First, a larger proportion of the aggregated ligand becomes transferred into the monomeric form, which is the most biologically active form (15). Second, a larger proportion of the monomeric ligand becomes bound to albumin; this may of itself enhance delivery of the ligand to receptors on target cells and facilitate its cellular influx, as has been demonstrated for various amphipaths, including long-chain fatty acids (30) and bilirubin (25). An enhancing effect of albumin on PGE_2 binding to a membrane receptor has also been reported (6). Third, the increased proportion of the albuminbound fraction makes the ligand less accessible for degrading enzymatic systems; this is certainly true for PGs (14).

It was suggested by Székely and Szelényi (43) that exogenous (free, self-aggregated?) PGE may not act in exactly the same way as the PG liberated endogenously (bound to albumin?) during fever; this argument was used to explain some contradictory data on the role of PGs in the febrile response. We speculate that administration of the albumin-bound PGE₂ is more physiologically relevant than administration of the free form. As our data clearly demonstrate, the biological effects of the two forms may be different. Thus the effect of PGE₂ on smooth musculature (urination and defecation) occurred significantly earlier when the drug was administered in the preformed complex with HSA. More importantly, the bound form of PGE₂ was febrigenic, whereas the free PGE₂ was not. A peripheral administration of free PGs in aqueous solutions is likely, therefore, to lead to false negative results. If so, some earlier attempts to induce fever via the peripheral administration of free PGs might have been unsuccessful as a result of this exact reason. Nevertheless, the negative results obtained in these earlier studies led to the dismissal of any important role of blood-borne PGE₂ in fever (2, 20). We suggest that the validity of such a dismissal should be questioned, and the physiological role of blood-borne PGs should be revisited.

Peripheral PGE_2 in fever. The pyrogenic activity of intravenous PGE_2 (bound form) is in line with the data of others, who showed that intracarotid (5, 41) or intravenous (1, 7, 11, 16, 26, 40) PGE_2 successfully reaches the brain and induces a dose-dependent fever. Thus our study provides additional support to the intriguing hypothesis of blood-borne PGE_2 playing a role in fever (7, 18, 22, 36, 41). Yet, the mechanisms of the participation of blood-borne, albumin-bound PGE_2 in fever remain speculative. A priori, three possibilities can be suggested. First, binding of the PGE_2 -albumin complex to brain endothelial cells (via either a specific interaction with the albumin-binding protein or a nonspecific interaction with the lipid bilayer of the membrane) may facilitate dissociation of the complex (32, 44), thus facilitating PGE_2 uptake by the cells. From there, PGE_2 may either further diffuse into the neural tissue or trigger the synthesis and/or release of other pyrogenic mediators in situ. Second, PGE₂ may codiffuse with albumin in the perivascular space in the periventricular organs (such as the organum vasculosum laminae terminalis), dissociate at the surface of neurons or nonneural cells, and thus trigger the febrile response either directly or via the synthesis and/or release of pyrogenic mediators. Indeed, albumin is known to easily penetrate the fenestrated endothelium of various vascular beds and enter the tissue; in fact, the total extravascular pool of albumin is two times larger than the total intravascular pool (27). In the brain, such a penetration allows blood albumin to reach the cerebrospinal fluid; 80% of all protein in the cerebrospinal fluid is albumin (27). Third, afferent fibers of peripheral nerves may constitute another target for the albumin-bound PGE₂. Morimoto et al. (21) have hypothesized that peripheral nerves play an important role in the genesis of the early febrile phase. (The term early febrile phase refers to the only phase of a monophasic fever or to the first phase of a polyphasic febrile response; see Ref. 33). Recently, we have shown that the development of the early phase of lipopolysaccharide fever requires the integrity of the vagus nerve (35) and, specifically, its hepatic branch (39). On the other hand, blood-borne PGE₂ is also considered to be a mediator of the early febrile phase (18, 22, 41). Furthermore, vagal sensory neurons express PG receptors; peripheral PGE₂ exhibits multifaceted regulatory actions by modifying vagal afferent transmission (for review, see Ref. 12); and blood-borne (not synthesized in situ) albumin is present in peripheral nerves (27). Finally, it has been recently shown that activation of vagal afferents by cytokines is PG mediated (12, 23). Although further research is needed to determine a partial contribution of each of these three putative mechanisms of blood-borne, albumin-bound PGE₂ to the genesis of the fever response, some speculation is natural.

Perspectives

We speculate that blood-derived PGE₂ carried by serum albumin is likely to mediate the early febrile phase through an action on neural afferent fibers, perhaps of the hepatic vagal branch. Because this phase of fever can be blocked by truncal vagotomy (35), hepatic branch transection (39), capsaicin desensitization of intra-abdominal afferents (M. Székely and M. Balaskó, unpublished), and peripheral administration of PG synthesis inhibitors that do not cross the BBB (18, 21, 36), the proposed mechanism is likely to constitute the major mechanism of the early phase. As for the later febrile phases (second, third, etc.; see Ref. 34), their genesis is unlikely to involve afferent fibers of peripheral nerves (35). Therefore, if PGs are mediators of the later fever (as has been proposed; see Refs. 18, 22), they act on different targets, perhaps those located in either the perivascular space of the circumventricular organs or the neural tissue behind the BBB (2, 37,

42). In either case, these targets may be accessible to both blood-derived PGs and those synthesized locally. Thus the proposed schema of the febrile pathogenesis incorporates both the blood-borne and the brain-borne PGs. The question of whether the febrigenic PGs are of the peripheral or central origin should probably be rephrased to which stages of febrile pathogenesis are mediated by the peripheral PGs and which stages by the central?

The authors thank Dr. V. N. Gourine for advice and encouragement and R. S. Hunter for editorial assistance.

The study was supported in part by the Collins Medical Trust, Medical Research Foundation of Oregon, and Good Samaritan Foundation (Portland, OR).

Preliminary results were reported elsewhere (*Soc. Neurosci. Abstr.* 24: 1864, 1998).

A. I. Ivanov is on leave from the Institute of Bioorganic Chemistry, Minsk 220141, Belarus.

Address for reprint requests and other correspondence: A. A. Romanovsky, Director, Thermoregulation Laboratory, Legacy Holladay Park Medical Center, P.O. Box 3950, Portland, OR 97208-3950 (E-mail: aromanov@lhs.org).

Received 11 August 1998; accepted in final form 26 February 1999.

REFERENCES

- 1. Abul, H. T., J. Davidson, A. S. Milton, and D. Rotondo. Prostaglandin E₂ enters the brain following stimulation of the acute phase immune response. *Ann. NYAcad. Sci.* 813: 287–295, 1997.
- Blatteis, C. M., and E. Sehic. Prostaglandin E₂: a putative fever mediator. In: *Fever: Basic Mechanisms and Management* (2nd ed.), edited by P. A. Mackowiak. Philadelphia, PA: Lippincott-Raven, 1997, p. 117–145.
- Buko, V. U., I. B. Zavodnic, and I. I. Stepuro. Interaction of prostaglandin E₂ with human serum albumin. *Biokhimia* 52: 891–895, 1987 (in Russian).
- 4. Chen, R. F. Removal of fatty acids from serum albumin by charcoal treatment. *J. Biol. Chem.* 242: 173–181, 1967.
- Coceani, F., I. Bishai, D. Engelberts, R. V. House, and S. L. Adamson. Response of newborn and adult sheep to pyrogens: relation between fever and brain eicosanoid changes. *Brain Res.* 700: 191–204, 1995.
- Cohen-Luria, R., and G. Rimon. Albumin and GTP modulate the affinity of prostaglandin E₂ receptors in rat epididymal adipocyte membranes. *Second Messengers Phosphoproteins* 12: 225–234, 1988.
- 7. **Dascombe, M. J., and A. S. Milton.** Study on the possible entry of bacterial endotoxin and prostaglandin E_2 into the central nervous system from the blood. *Br. J. Pharmacol.* 66: 565–572, 1979.
- 8. Doumas, B. T., W. A. Watson, and H. G. Biggs. Albumin standards and the measurement of serum albumin with bromcresol green. *Clin. Chim. Acta* 31: 87–96, 1971.
- Duncombe, W. G. The colorimetric micro-determination of long-chain fatty acids. *Biochem. J.* 88: 7–10, 1963.
- Edmonds, J. W., and W. L. Duax. Molecular conformation of prostaglandin E₂. *Prostaglandins* 5: 275–281, 1974.
- Eguchi, N., H. Hayashi, Y. Urade, S. Ito, and O. Hayaishi. Central action of prostaglandin E₂ and its methyl ester in the induction of hyperthermia after their systemic administration in urethane-anesthetized rats. *J. Pharmacol. Exp. Ther.* 247: 671– 679, 1988.
- Ek, M., M. Kurosawa, T. Lundeberg, M. Heilig, and A. Ericsson. Activation of vagal afferents after intravenous injection of interleukin-1β: role of endogenous prostaglandins. J. Neurosci. 18: 9471–9479, 1998.
- Hamberg, M., and B. Samuelsson. On the metabolism of prostaglandins E₁ and E₂ in man. *J. Biol. Chem.* 246: 6713–6721, 1971.
- 14. Hawkins, H. J., A. G. E. Wilson, M. W. Anderson, and T. E. Eling. Uptake and metabolism of prostaglandins by isolated

perfused lung: species comparison and the role of plasma protein binding. *Prostaglandins* 14: 251–259, 1977.

- 15. Heirwegh, K. P. M. Unsuspected ligand aggregation: a key problem in biochemical and biological assays with natural and xenobiotic amphipaths. *Biochem. Educ.* 20: 36–40, 1992.
- Jones, S. A., S. L. Adamson, D. Engelberts, I. Bishai, J. Norton, and F. Coceani. PGE₂ in the perinatal brain: local synthesis and transfer across the blood brain barrier. *J. Lipid Mediators* 6: 487–492, 1993.
- Lin, M. T. Effects of intravenous and intraventricular prostaglandin E₁ on thermoregulatory responses in rabbits. *J. Pharmacol. Exp. Ther.* 204: 39–45, 1978.
- Milton, A. S. Prostaglandins and fever. *Prog. Brain Res.* 115: 129–139, 1998.
- 19. Milton, A. S., and S. Wendlandt. Effects on body temperature of prostaglandins of the A, E and F series on injection into the third ventricle of unanesthetized cats and rabbits. *J. Physiol.* (*Lond.*) 218: 325–336, 1971.
- Morimoto, A., K. Morimoto, T. Watanabe, Y. Sakata, and N. Murakami. Does an increase in prostaglandin E₂ in the blood circulation contribute to a febrile response in rabbits? *Brain Res. Bull.* 29: 189–192, 1992.
- 21. Morimoto, A., N. Murakami, T. Nakamori, and T. Watanabe. Evidence for separate mechanisms of induction of biphasic fever inside and outside the blood-brain barrier in rabbits. *J. Physiol. (Lond.)* 383: 629–637, 1987.
- Morimoto, A., N. Murakami, T. Nakamori, and T. Watanabe. Multiple control of fever production in the central nervous system in rabbits. *J. Physiol. (Lond.)* 397: 269–280, 1988.
- 23. Niijima, A. The afferent discharges from sensors for interleukin 1β in the hepatoportal system in the anesthetized rat. *J. Auton. Nerv. Syst.* 61: 287–291, 1996.
- Omoto, S., Y. Mizushima, H. Aihara, K. Yokoyama, M. Watanabe, and A. Yanagawa. Prostaglandin E₁ incorporated in lipid microspheres (lipo PGE₁). *Drugs Exp. Clin. Res.* 11: 627–631, 1985.
- Ostrow, J. D., P. Mukerjee, and C. Tiribelli. Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. *J. Lipid Res.* 35: 1715–1737, 1994.
- Parrott, R. F., S. V. Vellucci, M. L. Forsling, and J. A. Goode. Hyperthermic and endocrine effects of intravenous prostaglandin administration in the pig. *Domest. Anim. Endocrinol.* 12: 197–205, 1995.
- 27. Peters, T., Jr. All About Albumin: Biochemistry, Genetics and Medical Applications. San Diego, CA: Academic, 1996.
- Piper, P. J., J. R. Vane, and J. H. Wyllie. Inactivation of prostaglandins by the lungs. *Nature* 225: 600–604, 1970.
- Plate, N. A., L. I. Valuev, T. A. Valueva, and V. V. Chupov. Biospecific hemosorbent based on proteinase inhibitor: synthesis and properties. *Biomaterials* 14: 51–56, 1993.
- Pond, S. M., R. A. Gordon, Z. Y. Wu, R. A. Weisiger, and L. Bass. Effects of gender and pregnancy on hepatocellular uptake of palmitic acid: facilitation by albumin. *Am. J. Physiol.* 267 (*Gastrointest. Liver Physiol.* 30): G656–G662, 1994.

- 31. **Raz**, **A.** Interaction of prostaglandins with blood plasma proteins. I. Binding of prostaglandin E_2 to human plasma proteins and its effect on the physiological activity of prostaglandin E_2 in vitro and in vivo. *Biochim. Biophys. Acta* 280: 602–613, 1972.
- Reed, R. G., and C. M. Burrington. The albumin receptor effect may be due to a surface-induced conformational change in albumin. J. Biol. Chem. 264: 9867–9872, 1989.
- 33. Romanovsky, A. A., V. A. Kulchitsky, N. V. Akulich, S. V. Koulchitsky, C. T. Simons, D. I. Sessler, and V. N. Gourine. First and second phases of biphasic fever: two sequential stages of the sickness syndrome? *Am. J. Physiol.* 271 (*Regulatory Integrative Comp. Physiol.* 40): R244–R253, 1996.
- Romanovsky, A. A., C. T. Simons, and V. A. Kulchitsky. "Biphasic" fevers often consist of more than two phases. *Am. J. Physiol.* 275 (*Regulatory Integrative Comp. Physiol.* 44): R323–R331, 1998.
- Romanovsky, A. A., C. T. Simons, M. Székely, and V. A. Kulchitsky. The vagus nerve in the thermoregulatory response to systemic inflammation. *Am. J. Physiol.* 273 (*Regulatory Integrative Comp. Physiol.* 42): R407–R413, 1997.
- 36. Rotondo, D., H. A. Abul, A. S. Milton, and J. Davidson. Pyrogenic immunomodulators increase the level of prostaglandin E_2 in the blood simultaneously with the onset of fever. *Eur. J. Pharmacol.* 154: 145–152, 1988.
- Saper, C. B., and C. D. Breder. The neurologic basis of fever. N. Engl. J. Med. 330: 1880–1886, 1994.
- Sehic, E., M. Székely, A. L. Ungar, A. Oladehin, and C. M. Blatteis. Hypothalamic prostaglandin E₂ during lipopolysaccharide-induced fever in guinea-pigs. *Brain Res. Bull.* 39: 391–399, 1996.
- Simons, C. T., V. A. Kulchitsky, N. Sugimoto, L. D. Homer, M. Székely, and A. A. Romanovsky. Signaling the brain in systemic inflammation: which vagal branch is involved in fever genesis? Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R63–R68, 1998.
- 40. **Siren, A.-L.** Central cardiovascular and thermal effects of prostaglandin E₂ in rats. *Acta Physiol. Scand.* 116: 229–234, 1982.
- 41. Skarnes, R. C., S. K. Brown, S. S. Hull, and J. A. Mc-Cracken. Role of prostaglandin E in biphasic fever response to endotoxin. *J. Exp. Med.* 154: 1212–1224, 1981.
- Stitt, J. T. Prostaglandin, the OVLT and fever. In: *Neuro-Immunology of Fever*, edited by T. Bartfai and D. Ottoson. Oxford, UK: Pergamon, 1992, p. 155–165.
- Székely, M., and Z. Szelényi. The pathophysiology of fever in the neonate. In: *Handbook of Experimental Pharmacology. Pyretics and Antipyretic*, edited by A. S. Milton. Berlin, Germany: Springer, 1982, vol. 60, p. 479–528.
- Tiruppathi, C., A. Finnegan, and A. B. Malik. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. *Proc. Natl. Acad. Sci. USA* 93: 250– 254, 1996.
- Unger, W. G. Binding of prostaglandin to human serum albumin. J. Pharm. Pharmacol. 24: 470–477, 1972.